Thioredoxin interacting protein promotes endothelial cell inflammation in response to disturbed flow by increasing leukocyte adhesion and repressing Kruppel-like factor 2.
نویسندگان
چکیده
RATIONALE Endothelial cells (EC) at regions exposed to disturbed flow (d-flow) are predisposed to inflammation and the subsequent development of atherosclerosis. We previously showed that thioredoxin interacting protein (TXNIP) was required for tumor necrosis factor-mediated expression of vascular cell adhesion molecule-1. OBJECTIVE We sought to investigate the role of TXNIP in d-flow-induced cell adhesion molecule expression and leukocyte interaction with vessels, and the mechanisms by which TXNIP suppresses athero-protective gene expression. METHODS AND RESULTS Using en face staining of mouse aorta, we found a dramatic increase of TXNIP in EC at sites exposed to d-flow as compared to steady flow. EC-specific TXNIP (EC-TXNIP) knockout mice showed significant decreases in vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 mRNA expression in the d-flow regions of mouse aorta. Intravital microscopy of mesenteric venules showed that leukocyte rolling time was decreased, whereas rolling velocity was increased significantly in EC-TXNIP knockout mice. In vitro experiments using a cutout flow chamber to generate varying flow patterns showed that increased TXNIP was required for d-flow-induced EC-monocyte adhesion. Furthermore, we found that the expression of Kruppel-like factor 2, a key anti-inflammatory transcription factor in EC, was inhibited by TXNIP. Luciferase and chromatin immunoprecipitation assays showed that TXNIP was present within a repressing complex on the Kruppel-like factor 2 promoter. CONCLUSIONS These data demonstrate the essential role for TXNIP in mediating EC-leukocyte adhesion under d-flow, as well as define a novel mechanism by which TXNIP acts as a transcriptional corepressor to regulate Kruppel-like factor 2-dependent gene expression.
منابع مشابه
Cellular Biology Thioredoxin Interacting Protein Promotes Endothelial Cell Inflammation in Response to Disturbed Flow by Increasing Leukocyte Adhesion and Repressing Kruppel-Like Factor 2
متن کامل
Novel mechanisms of endothelial mechanotransduction.
Atherosclerosis is a focal disease that develops preferentially where nonlaminar, disturbed blood flow occurs, such as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to disturbed flow compared with steady laminar flow. Disturbed flow that occurs in so-called atheroprone areas activates proinflammatory and apoptotic signaling, and this r...
متن کاملThioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-α: a key mechanism for vascular endothelial growth factor receptor-2 transactivation by reactive oxygen species.
OBJECTIVE Thioredoxin-interacting protein (TXNIP) promotes inflammation in endothelial cells (EC) by binding to thioredoxin-1 (TRX1) in a redox-dependent manner. Formation of the TXNIP-TRX1 complex relieves inhibition of the apoptosis signal-regulating kinase 1-c-Jun N-terminal kinase-vascular cell adhesion molecule-1 pathway. Because TXNIP is an α-arrestin with numerous protein-protein interac...
متن کاملDisturbed Flow Enhances Inflammatory Signaling and Atherogenesis by Increasing Thioredoxin-1 Level in Endothelial Cell Nuclei
BACKGROUND Oxidative stress occurs with disturbed blood flow, inflammation and cardiovascular disease (CVD), yet free-radical scavenging antioxidants have shown limited benefit in human CVD. Thioredoxin-1 (Trx1) is a thiol antioxidant protecting against non-radical oxidants by controlling protein thiol/disulfide status; Trx1 translocates from cytoplasm to cell nuclei due to stress signaling, fa...
متن کاملThioredoxin-interacting protein is a biomechanical regulator of Src activity: key role in endothelial cell stress fiber formation.
RATIONALE Fluid shear stress differentially regulates endothelial cell stress fiber formation with decreased stress fibers in areas of disturbed flow compared with steady flow areas. Importantly, stress fibers are critical for several endothelial cell functions including cell shape, mechano-signal transduction, and endothelial cell-cell junction integrity. A key mediator of steady flow-induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 110 4 شماره
صفحات -
تاریخ انتشار 2012